Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions.

Longitudinal neuroimaging data have been widely used to predict clinical scores for automatic diagnosis of Alzheimer’s Disease (AD) in recent years. However, incomplete temporal neuroimaging records of the patients pose a major challenge to use these data for accurately diagnosing AD. In this paper, we propose a novel method to learn an enriched representation for imaging biomarkers, which simultaneously captures the information conveyed by both the baseline neuroimaging records of all the participants in a studied cohort and the progressive variations of the available follow-up records of every individual participant.