Learning disentangled representations to harmonize connectome network measures.

Connectome network metrics are commonly regarded as fundamental properties of the brain, and their alterations have been implicated in the development of Alzheimer’s disease, multiple sclerosis, and traumatic brain injury. However, these metrics are actually estimated properties through a multistage propagation from local voxel diffusion estimations, regional tractography, and region of interest mapping. These estimation processes are significantly influenced by choices specific to imaging protocols and software, producing site-wise effects.