Topology-based Clustering of Functional Brain Networks in an Alzheimer’s Disease Cohort.

Alzheimer’s disease is a progressive neurodegenerative disease with many identifying biomarkers for diagnosis. However, whole-brain phenomena, particularly in functional MRI modalities, are not fully understood nor characterized. Here we employ the novel application of topological data analysis (TDA)-based methods of persistent homology to functional brain networks from ADNI-3 cohort to perform a subtyping experiment using unsupervised clustering techniques. We then investigate variations in QT-PAD challenge features across the identified clusters. Using a Wasserstein distance kernel with a variety of clustering algorithms, we found that the 0