Superficial white matter (SWM) U-fibers contain considerable structural connectivity in the human brain; however, related studies are not well-developed compared to the well-studied deep white matter (DWM). Conventionally, SWM U-fiber is obtained through DWM tracking, which is inaccurate on the cortical surface. The significant variability in the cortical folding patterns of the human brain renders a conventional template-based atlas unsuitable for accurately mapping U-fibers within the thin layer of SWM beneath the cortical surface. Recently, new surface-based tracking methods have been developed to reconstruct more complete and reliable U-fibers. To leverage surface-based U-fiber tracking methods, we propose to create a surface-based U-fiber dictionary using high-resolution diffusion MRI (dMRI) data from the Human Connectome Project (HCP). We first identify the major U-fiber bundles and then build a dictionary containing subjects with high groupwise consistency of major U-fiber bundles. Finally, we propose a shape-informed U-fiber atlasing method for robust SWM connectivity analysis. Through experiments, we demonstrate that our shape-informed atlasing method can obtain anatomically more accurate U-fiber representations than state-of-the-art atlas. Additionally, our method is capable of restoring incomplete U-fibers in low-resolution dMRI, thus helping better characterize SWM connectivity in clinical studies such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI).